
International Journal o f  Theoretical Physics, Vol. 30, No. 1, 1991 

Bifurcation in a Coupled Logistic Map. 
Some Analytic and Numerical Results 

A. Roy Chowdhury ~ and K. Chowdhury ~ 

Received June 4, 1990 

We study the bifurcation pattern, two- and four-cycle generation, and super- 
track functions in the case of the coupled logistic system given by X,,+t = 
Ax,, (1 - 2y  n) + y,,, Y,,+ l = I~Y,, (1 - y,, ), which is of immense importance in various 
biophysical processes. We deduce analytic formulas for the two- and four-cycle 
fixed points and cross-check them numerically. The agreement is quite good. 
Next the bifurcation pattern is explained with the help of analytically derived 
supertrack functions. To discuss the stability of the system in the various zones 
defined by the parameter values (A,/z), the Lyapunov exponents are evaluated, 
showing a nice transition from the stable to the unstable region. An interesting 
phenomena occurs at p. = 4, where the logistic itself is chaotic. We then show 
that near the fixed point an analytic solution can be obtained for the renormaliz- 
ation group equation. In the special case A = 1, /z = 4 a neat analytic formula 
can be deduced for the n-times iterated values of (x, Yi)- 

1. I N T R O D U C T I O N  

Dur ing  the past few decades there has been  a surge of interest  in the 
s tudy of  n o n l i n e a r  systems, both  con t inuous  and  discrete (May, 1976). The 
discrete n o n l i n e a r  equat ions  or mappings  are of enormous  relevance in 
b iophysica l  processes. P h e n o m e n a  such as the in termi t tent  mot ion  of the 

cardiac system (Glass e t  a l . ,  1987), ecological ba lance  (May, 1987), and  the 
famous  p reda to r -p rey  model  (Alberi  e t  aI . ,  1982) all are actual ly governed 
by n o n l i n e a r  discrete mappings .  Among  these, the logistic equa t ion  was 
s tudied in the p ioneer ing  work of  F e i g e n b a u m  (1980). There have been  
similar  analyses  for m a n y  other  systems. An impor tan t  aspect of such 
analyses  is that  they are ma in ly  numer ica l  and  requires the aid of  a compute r  
(Kadanoff ,  1983). In  this paper  we report  an exhaust ic  study of an extended 
logistic equa t ion ,  that  is, a logistic equa t ion  coupled  to another  discrete 
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equation. An important feature of our approach is that in some situations 
we have been able to reproduce explicit analytic results for this system. Our 
analytic results compare quite favorably with the numerical data obtained 
on a computer. 

2. F O R M U L A T I O N  

The coupled logistic system is written in the form 

xn+~ = Ax.(1 - 2y.) + y .  (la) 

Y~+l =/xy~ (1 -Yn) (lb) 

The second equation of the above set will be considered in the more general 
form 

Y.+I = fY .  - Ixy~ (2) 

It is known that equation (2) has fixed points at 

yl*=0 y*2 - f - 1  (3/ 

Before reporting our result for the coupled situation, we first discuss 
equation (2). 

The second iterated map of (2) is 

Y.+2 -- _/~3y4 + 2f/ 2y3 _ (fl~ +f21~)y~ + f E y .  (4) 

Equation (4) has four fixed points, two of which are those of (3). The two 
new ones are 

( f +  1) + e [ ( f +  1 ) ( f -  3)] 1/2 
Yn+2 = Y* - e = 4-1 

2~ 

To proceed with further iteration of (4) would be embarrassingly difficult. 
We follow a slightly different route. We proceed by considering small 
deviations from the fixed point (4). Let us write in general 

y. = y* + Ay. (5) 

so that we get 

Ay.+2 = ( f -  2~y*) Ay.+~ 2 - ~ A y . + l  (6)  

neglecting terms of higher order than (Ayi) 2. We can choose y* to be either 
y+* or y*_, so we get 

2 Ay.+2 = ( f -2 /~y*)  Ay.+~-/~ A.+~ 

= ( f -2 /zy*_)[( f -21~y*+)  Ay~ -1~ Aye] 
-/x[(f-2/zy+*) A y . - / z  Ay2] 2 (7) 
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We again keep  terms quadra t ic  in Ay., so that  

Ay.+ 2 = ( f -  2 / z y * ) ( f - -  2/zy*) Ay. 

( 2 * ) ( f  2 . . . ) 2 ]  2 - / z  [ f -  /~y_ - /~v A y .  

Substi tut ing values o f  y+* and  y*_, we obta in  

Ayn+2 = _ ( f 2 _  2 f -  1) Ayn - / ~ { ( f +  1 ) ( f -  3) • 3 [ ( f +  1 ) ( f -  3)]1/2e} Ay~ 

= f  Ay n - /2  Ay 2 (8) 

which is o f  the same fo rm as (2). 
So the new fixed points  are 

( f +  1 )+  e l ( f +  1 ) ( f - 3 ) ]  1/2 
(hy*)•  -- 2/2 (9) 

the fixed points  o f  the original  m a p  at the 4th cycle stage are 

(/z + 1) + e[(/~ + 1)(/z - 3)] 1/2 
Yn*+4 - -  

2/z 

( - ~ 2  + 2/.~ + 5) + e ' [ ( - ~ 2 +  2/.t + 5 ) ( - ~ 2  + 2/z + 1)] ~/2 
-t 2/z{(/x + 1)(/z _ 3) + 3g[(/z + 1)(/z _ 3)]1/2 } (10) 

We now cons ider  the first equa t ion  of  (1); in a more  general  fo rm 

X.+l = (A - f ly . )x .  + try. (11) 

Let the first two fixed points  be  x+ and x_,  whence  

x+ = ( h - fly_)x_ + try_ 
(12) 

x_ = (A - fly+)x+ + try+ 

which can be easily solved 

X + - -  

X _ - -  

tr[(A - fly_)y+ + y_] 

1 - (A - fly_)(A - fly+) 

o-[(A - fly+)y_ + y+] 

1 - (A - fly_)(A - fly+) 

(13) 

T a b l e  I. Resul t s  f o r / z  = 3 . 5  ~ 

F r o m  (10) C o m p u t e r  

0 .8736671 0 .8736671 

0 .3789983 0 .3828197 

0 .8300364  0 .8269408 

0 .5098905 0 .5008841 

" A f t e r  1000 i t e r a t i ons  wi th  in i t ia l  p o i n t s  x o = Yo = 0.4. 
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At the next iteration let the fixed points be designated as xl ,  x2, x3, x4; 
then, proceeding as before, we get 

or 
Xl = " ~  [ ( /~  - -  13y2)  (/~ - - / ~ Y 3 )  ( )k - -  ~ Y 4 ) Y l  

+ (A - / 3 y 3 )  (A - ~Y4)Y2 + (A -/3y4)Y3 + Y4] 

or 
X 2 = ~ [ ( A  - / ~ y 3 ) ( A  - ] 3 y 4 ) ( A  - jSy,)y2 

q- ( A  - 1 3 y 4 ) ( A  - ] ~ y , ) y 3  + ( A  - ] 3 y l ) y  4 + Y l ]  

or 
X 3 = " ~  [ ( A  - -  f l y 4 )  ( A  - -  flyl)(A - flY2)Y3 + ( A  - / 3 y ~ )  

(14) 

X (A - fly2)y4+ (A - jSy2)yl + Y2] 

or 
x4 = ~ [(A - / 3 y  1 )(A - ]3y2)(A -/3y2)Y4 

where 

+ (A - fly2)(A - ~Y3)Y~ + (A - flY3)Y2 + Y3] 

4 
IS]= 1 -  1] (A -r 

i=1 

Equations (10) and (14) can be easily generalized to the pth cycle very 
easily, but the expression becomes quite involved. Tables I-III we compare 
the result of  our computer calculation with the output of equations (10) 
and (14). 

The comparison in the tables shows that the agreement is reasonably 
good, and we can continue to write down formulas for the pth cycle. The 
diagrammatic representation of this bifurcating phenomenon is depicted in 

Table 11. Results for A = 0.33,  /3 = 0.68 ~ 

From (10) Computer 

x I = 0 .5060069  x~ = 0 .5004571 

x 2 = 0 .7491001 x2 = 0 .7511351 

x 3 = 0 .4388223  x 3 = 0 .4409118  

x4 = 0 .7344504  x4 = 0 .7318005  

"After 1000 iterations with initial points x o = Yo = 0.4. 
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Table IlL Results for the Eighth Cycle, for/z = 3.55, A = 0.33 

From (14) and (13) Computer 

x y x y 

0.5036415 0.8853967 0.5031102 0.8873708 

0.7572894 0.3574295 0.7587433 0.3548007 

0.4286879 0.8177912 0.4275122 0.8126558 

0.727877 0.5366565 0.7244375 0.5404746 

0.5190468 0.879329 0.5211225 0.8816844 

0.7493817 0.318306 0.7504076 0.3703253 

0.4041870 0.8382119 0.4345492 0.8278049 

0.7471001 0.507184 0.7337896 0.5060311 

101 

Figure 1, where x, is plotted against several values of /z .  The situation is 
very similar to that of  the usual logistic situation. On the other hand, Figure 
2 shows the occurrence of  windows and the appearance of periodic orbits 
within the chaotic zone. If one looks carefully at Figure 2 one observes 
some kind of  boundary lines going across the diagram. These separation 
lines are nothing but the famous supertruck function plots, which can exhibit 
the behavior of a chaotic system (Oblow, 1988). Chaotic behavior character- 
izes a system which has lost stability and yet is still bounded by its map. 
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Fig. 1. Bifurcation diagram for the coupled logistic equation for A = 0.33 and  p. = 2.8-4.  
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Fig. 2. Study of the chaotic region for the coupled logistic equation. 

Actually, these are "lifting" relations which have already been investigated 
in one-dimensional mappings.  In the case of  the logistic mapping these are 
defined as 

Qo(/X) = 1/2 (15) 

Q, (/x) = / ( t z l  Q,_l(/Z)) 

where f denotes the function given in (16). On the other hand, for the 
present coupled system, we define such relations through the equations 

P~()t,/x) = 1/2 (16) 

--, P,(A,/x) = AP,_~(1-2Q,_~) + Q,_I 

along with (15). One can now easily compute Q~, Q 2 , - . . ,  and obtain 

P,(A,/z) = 1/2 

P2(A,/~) = A/Z(1 - ~)  + p~/2 (17) 

Ps(A,/x) = A [A/2(1 - / x )  + iz/2][1 - 21z2(2 - tz)] + ~/x2(2 - / z )  

and so on. In Figure 3 we plot these curves for fixed values of  A and #;  
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Fig. 3. Diagram of periodic boundaries in the chaotic region. 

various values of these exactly reproduce the zonal lines observed in 
Figure 2. 

3. STABILITY AND ATrRACTORS 

To study the stability of the system under consideration, we rewrite 
( l a ) ,  ( l b )  as 

x.+, = f ( x . ,  y.)  = (A - f l y . ) x .  + o'y. 

Y.+1 = g (x . ,  y . )  = fy .  - ~y2 

Let us consider small perturbation of the ith iterate as (xi, yi) to 
(xi + ei, Yi + 6i), whence 

6. \i=o ] \ 6 o ]  6o 

where o'i is the matrix given as 

A -  r ~r- f lx i~  (191 
o'i = 0 f -  2 I~Yi / 
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The stability is governed by the Lyapunov exponents (Arnold, 1978), which 
are defined by the two eigenvalues of zro'i. These are respectively given by 
the expressions, 

n-1 

;~, = l-I ( ~ - / 3 s j )  
j = o  

n-1 

A2 = I] ( f -2 /xy , )  
j = o  

(20) 

and the exponents are 

1 n--I 
)(1 = -  ~ 1 o g ( h - - / 3 y , )  

n j = o  

1 rl--I 
X2 = -  2 l og ( f -2 / zy , )  

n j=o  

(21) 

Figures 4 and 5 plot these numerically. For h =0.33 and /x =0.4 these 
exponents are negative, showing a situation of perfect stability. This point 
is worth noticing, because it is already known that at /x = 4, the logistic 
system is no longer stable, but the coupled system considered here shows 
perfect stability. We have also evaluated the exponents at other values of 
the parameters which shows that the system turns out to be unstable. As 
we increase the value of  h, the instability shows up. Actually, it starts 
at h = 1. As the value of  h increases further, the situation becomes totally 
unstable and chaotic, which is evident from Figures 4a-4c. The interest- 
ing situation at h = 0.33, /x = 4 can be more easily analyzed by looking 
at the phase space plot, which is shown in Figures 5a-5c. This diagram 
shows that at these values we have a perfect attractor. The circled dot is 
the starting point of the iteration, Xo = Yo = 0.1. In the next diagram, keeping 
the parameter values fixed at h = 0.33,/z = 4, we have changed the initial 
value to Xo = Yo = 0.49. Even then the figure remains the same, which immedi- 
ately leads to the conclusion that we have arrived at an attractor of the 
mapping. The shape of the attractor remains the same even if we take 
Xo = Yo = 0.4 or x0 = 0.4, Yo = 0.6. The shape of the attractor changes as we 
change the values of the parameters A and /x. Taking Xo = Y0 = 0.4 and 
h = 1.09, /x = 4, we find that the attractor is redrawn, which shows (Figure 
5c) that the attractor has shrunk and is going to be destroyed, which becomes 
a straight line at h = 1. These facts will be supported by the very neat 
formulas that we will deduce in the next section for the nth iterated values 
of (xi, Yi) for the special values of the parameters. 
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Fig. 5. 

( a )  

J "  2 - . ' g "  

"2.--- 

~ . -  

A t t r a c t o r  f o r  c o u p l e d  log i s t i c  s y s t e m ,  fo r  ( a )  # = 4, h = 33,  x = y = 49,  n = 1000. 

(b )  

~ * ' ~ , ~ " ~ ' ~  :: .. _ 

Fig.  5. A t t r a c t o r  f o r  c o u p l e d  log is t ic  s y s t e m ,  fo r  (b )  /x = 4, h = 33,  x = y  = 1, n = 1000. 
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" - - . . . . . .  - 
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(c) 

Fig. 5. Attractor with changed values of parameters, for (c) ~ = 4, A = 1.09, x = y = 0.4. 

4. ANALYTIC F O R M U L A S  F O R  T H E  ITERATES 

Let us now try to visualize the special si tuation at /x = 4 and A = 1. 
Here  we have 

y.+~ = 4y~(1 - y n )  (22) 

Setting y .  = sin 2 ~r0., it is conver ted  to the simple form 

0.+1 = 20. (23) 

whence  0. = 2"0o. 
On the other  hand,  

x.+~ = x.  cos 2~r0. + sin z 7r0. (23a) 

Equat ion  (23a) can be easily manipula ted  to get 

x.  = Xo [] Cos(ZkTr0o) + ~ sinZ(UTr0o) 
k=l  j = l  

x f i  CO~(2k~0o)+~ sin2(Z~Ir0o) (24) 
k = j + 2  j = 0  

Formulas  (22) and (24) can be used to compare  the analytic form of  the 
Lyapunov  coefficients. The  Jacobian matrix o f  equat ion (1) now reads 

J = I I (  c~ 2~'0"0 7r sin 2~-~. ( 1 - x . ) )  
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whence we get 

X1 = log 2 

1__ z X2 = log cos(2"+1~'0o) 
n 

showing the positive nature of  the exponents. 

Roy Chowdhury and Chowdhury 

(25) 

5 .  R E N O R M A L I Z A T I O N  G R O U P  E Q U A T I O N  

In this last section we discuss the relevance of the renormalization 
group equation in the context of the coupled map discussed above. The 
group equations are 

f ~ ( y )  --- - a f 2 ( - y / a )  
(26) 

~b~. (x,  y )  = - f l~b] .  ( - x / ~ ,  - y / a )  

where a and/3  are the scaling lengths for x and y. In practice a solution 
of  the renormalization group equation is difficult to obtain; the detailed 
perturbative approach has been discussed for some important maps in 
Feigenbaum (1979), Kadanoff et al. (1982), and Widom and Kadanoff 
(1982). Here we show that a simplified approach can be adopted, which 
approximates the map by a continuous differential equation near the fixed 
points. The quadratic map near the fixed point y~ = 0 can be written as 

dy~ ay~ (27) 
Yn+l = Y.  + ay~ or d--n = 

which can be at once integrated to yield 

Yo 
Yn = (28) 

1 - nayo 

The other equation of  (1) near xn = 0 is 

x,,+l = x,, + blX,,y,, + bzy. 

which can be recast in the form 

dx,, blYo yob2 
- -  x .  - - -  ( 2 9 )  

an 1 - n a y o  1 - n a y o  

on use of  (28). The solution of (29) can be seen to be 

Y, = Yo(1 - nayo) -b'/a (30) 

where ~,, = x,, + b2/ bl . 
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It  can now be easily visualized that the solutions (28) and (30) satisfy 
equat ions (26) for a = - 2 ,  but  /3 = arbitrary. The value a = - 2  is only a 
rough  estimate o f  the value o f  a obta ined by the sophist icated approach ,  
which is 2.502907875. 

6. D I S C U S S I O N  

In the above analysis we have given a partially analytic t reatment  o f  
an extended form of  logistic map.  The analytic and numerical  estimates 
match  quite well. The strange attractors and stability o f  the system are 
studied. The map  can be o f  useful in many  biophysical  and ecological  
processes. 
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